Academy

## Color Theory - Part 2

Color Communication

Color Theory - Part 2
Color Communication
datacolor
Academy


Color is a perception by an observer of light which has been modified by an object.


## Review - Light Sources

Academy



Fluorescent


## Review - The Object

Academy
The spectral reflectance curve (\%R ) curve shows the amount of light reflected at each wavelength.

Objects modify the incident light by absorbing some wavelengths and reflecting others.

## Review - The Observer

## Academy



We discussed the human observer and how the eye and brain work together to produce the perception of color. The retina in the eye contains rods and cones which detect the incoming light. The cones are responsible for color vision while the rods are responsible for dark adapted vision.

The Trichromatic Theory and the Opponent Theory state that vision involves a progression of neural processes from rods and cones to the bipolar cells to the ganglion cells and then to the visual cortex and the rest of the brain.


## Color Communication

## Color Perception and the Need for a Colorimetric Description

In our previous webinar, we were able to define on a quantitative basis how light sources and objects contribute to the perception of color. The human observer, however, was not shown as a measurable entity.

In order to define a colorimetric description, the color sensitivity of the human observer to different wavelengths of light would need to be standardized and made available in a numerical form.

The CIE Standard Observer is a table of numbers designed to represent a normal observer, but its responses do not refer to any specific observer. The Standard Observer is a numerical representation of what the "average person" sees.

The Standard Observer will provide a method to compare instrumental color measurements to human visual assessments. Let's look at the experimental setup that was used to create the Standard Observer.

## The Standard Observer

## Experiment Setup

Red, green and blue lamps with adjustable outputs


## The Standard Observer

Adjusting to match the yellow primary lamp

## datacolor

Academy


The observer adjusted the red, green and blue lights until a color match was achieved.

## The Standard Observer

## datacolor

Successfully matched the yellow primary lamp
Academy


Color was matched with .28 red, .25 green and 0 blue.

## The Standard Observer

Adjusting to match the violet primary lamp

## datacolor

Academy


The observer adjusted the red, green and blue lights until a color match was achieved.

## The Standard Observer

Successfully matched the violet primary lamp

## datacolor

Academy


Color was matched with .21 red, .08 green and .24 blue.

Academy

The Standard Observer
Results of the color matching experiments of Wright and Guild



Datacolor Confidential All Rights Reserved


## The Standard Observer

Reason for negative numbers

Since it is impossible to match all spectrum colors using positive amounts of any set of three real lamps, in some cases one of the primary lamps was moved to the test lamp side.

This created "negative numbers" in the data.


CIE (1931) 2 Degree - Color Matching Functions


## CIE Luminosity Function - $V(\lambda)$



The CIE photopic luminosity function $V(\lambda)$ was established by the CIE and describes the average spectral sensitivity of human visual perception of brightness.

Some wavelengths can be seen more easily than others. We see green light around 550 nm much more easily than at any other wavelengths. Luminosity is the property of light by which we define how easily we can see it.

The y (y bar) color matching function of the CIE Standard Observer was made equivalent to the CIE Luminosity function.

## A Second Experiment

Repeated in 1964 with different field of view and lamps

## datacolor

Academy

In 1964 the experiment was repeated using larger target areas and different source lamps.


The $10^{\circ}$ field of view is about 27 times the area of the $2^{\circ}$ field of view.


## 1964 10ㅇ - Standard Observer



## datacolor

## $19312^{\circ}$ \& $1964 \mathbf{1 0}^{\circ}$ Standard Observers

Academy


## A Colorimetric Description

Defining a numerical system for color perception

## datacolor

Academy
We have described the visual color perception process by showing how the light source, object and observer are together responsible for color perception.


Natural Daylight


Object (Apple)


Human Observer

Color
Perception

With the Standard Observer, we can now develop a numerical specification:


Daylight Illuminant Numerical Data


Reflectance Curve
Numerical Data

## Colorimetric Description

## Tristimulus Values

Amounts of imaginary red, green and blue light to match color

## datacolor

Academy
Tristimulus values are computed wavelength by wavelength, by multiplying illuminant, object, \& observer data, at each wavelength, then adding the results.
Light Source $\quad$ \%R Data Std Observer


## Tristimulus Calculation

Sum of Product of Illuminant, Std Observer Data, and $\% R$ at $\lambda$

## datacolor

Academy

$$
\begin{array}{ll}
X=K \sum_{380}^{780} P(\lambda) x(\lambda) R(\lambda) & \begin{array}{l}
\text { Where: } \\
P(\lambda)
\end{array} \\
Y=K \sum_{380}^{780} P(\lambda) y(\lambda) R(\lambda) & x(\lambda)=\text { Light Energy std observer data } \\
y(\lambda)=\text { green std observer data } \\
Z=K \sum_{380}^{780} P(\lambda) Z(\lambda) R(\lambda) & \begin{array}{l}
Z(\lambda)=\text { blue std observer data } \\
K
\end{array} \\
& \\
K=100 /\left(\sum_{380}^{780} P(\lambda) y(\lambda)\right) &
\end{array}
$$

Illuminant and Observer Data
ASTM E308 Tables

## datacolor

Academy

Table 6.19


## What the XYZ Means

```
\(X=58.1 \quad Y=36.0 \quad Z=5.9\)
```





## Using Tristimulus Values

Colors with Equal XYZ Values Visually Match


The XYZ values are equal for the 2 samples using Illuminant D65 and the $1964 \mathbf{1 0}^{\circ}$ Observer.
These 2 samples should also be a visual match under a D65 type light source and a normal observer.

## Metamerism



The XYZ values are equal for the 2 samples using Illuminant D65 and the $1964 \mathbf{1 0}^{\circ}$ Observer.
These 2 samples may be a visual match under a D65 type light source and a normal observer. Because of the spectral difference however, the sample pair may be a mismatch under a different illuminant or to a different observer. This is called metamerism.

## Metamerism



X 27.7


Z 9.50



X 36.3
29.8

Z 12.2

The XYZ values are now different for the 2 samples using Illuminant A and the $1964 \mathbf{1 0}^{\circ}$ Observer.
These 2 samples will not be a visual match under an incandescent type light source and a normal observer. Because of the spectral difference the sample pair will be a mismatch under a this different illuminant. The samples are called a metameric pair.

## Metamerism

datacolor
Match Under D65/2
Academy


Metamerism
Simple Gray and Complex Gray
datacolor
Academy


## Chromaticity Diagram

Mapping Color Coordinates
Academy

## Chromaticity Coordinates

$$
\begin{gathered}
x=X /(X+Y+Z) \\
y=Y /(X+Y+Z) \\
z=Z /(X+Y+Z) \\
x+y+z=1.00
\end{gathered}
$$

The chromaticity coordinates map the color with respect to hue and saturation on the two-dimensional CIE Chromaticity Diagram.

## CIE xyY Color Space

CIE Chromaticity Diagram
Chromaticity Coordinates
Academy
Tristimulus Values of Red Sample - D65/2

$$
\mathrm{X}=31.10 \quad \mathrm{Y}=18.37 \mathrm{Z}=10.35
$$

Chromaticity Coordinates

$$
x, y=(.5199, .3071)
$$

## CIE xyY Color Space

CIE xyY = ( .5199, . $3071,18.37$ )

McAdam's Ellipses
The Search a Uniform Color Space
datacolor
Academy

教

Imagine placing these color chips in order


A Natural Color Language
You might start by separating the gray or neutral chips



## A Natural Color Language

You could
then finally arrive at an
arrangement
like this


## A Natural Color Language

Hue, Chroma, Lightness

Academy


## 3 Dimensions of Color

## Hue

Red, Blue, Yellow, etc. Greenish, Redder

Chroma
Saturation
Dull
Strong
Weak
Vivid
Pale
Lightness
Light
Dark
Bright
Dim


## datacolor

## Webinar - Final Comments

Academy
We have described the visual color perception process and defined a colorimetric description in these last 2 webinars.

Light Object Observer


Colorimetric Description


Standard Observer


$196410^{\circ}$ Std Obs


Tristimulus Values

Chromaticity Coordinates

## Next session:

## Academy

## Color Coordinates

CIELAB
Polar/Rectangular
Coordinates
Lab vs LCh
Color Difference - DE*
CMC
CIE2000


## datacolor

Academy

## Want to learn more?

Sign up at Datacolor Academy for classroom style lectures and demonstrations covering useful color topics in select venues around the globe

Some useful reading material:
Do You Know How Humans See Color?

Follow Datacolor Blog for more useful information

## Thank you and follow us:

www.facebook.com/DatacolorCorporate
www.linkedin.com/company/datacolor

- 

www.youtube.com/user/DatacolorIndustrial

