

Academy

### **Color Theory – Part 2**

**Color Communication** 

#### **Color Theory – Part 2** *Color Communication*







# **Color** is a **perception** by an **observer** of **light** which has been modified by an **object**.



#### <u>datacolor</u>

#### **Review - Light Sources**

Academy



Fluorescent







Datacolor Confidential All Rights Reserved

#### **Review - The Object**

Academy

datacolor



Objects modify the incident light by absorbing some wavelengths and reflecting others. The spectral reflectance curve (%R) curve shows the amount of light reflected at each wavelength.

![](_page_4_Figure_5.jpeg)

#### **Review - The Observer**

#### Academy

datacolor

![](_page_5_Picture_2.jpeg)

We discussed the human observer and how the eye and brain work together to produce the perception of color. The retina in the eye contains rods and cones which detect the incoming light. The cones are responsible for color vision while the rods are responsible for dark adapted vision.

The Trichromatic Theory and the Opponent Theory state that vision involves a progression of neural processes from rods and cones to the bipolar cells to the ganglion cells and then to the visual cortex and the rest of the brain.

![](_page_5_Figure_5.jpeg)

![](_page_5_Figure_6.jpeg)

Academy

#### **Color Perception and the Need for a Colorimetric Description**

In our previous webinar, we were able to define on a quantitative basis how light sources and objects contribute to the perception of color. The human observer, however, was not shown as a measurable entity.

In order to define a colorimetric description, the color sensitivity of the human observer to different wavelengths of light would need to be standardized and made available in a numerical form.

The CIE Standard Observer is a table of numbers designed to represent a normal observer, but its responses do not refer to any specific observer. The Standard Observer is a numerical representation of what the "average person" sees.

The Standard Observer will provide a method to compare instrumental color measurements to human visual assessments. Let's look at the experimental setup that was used to create the Standard Observer.

Academy

datacolor

**Experiment Setup** 

![](_page_7_Picture_3.jpeg)

Red, green and blue lamps with adjustable outputs

Adjusting to match the yellow primary lamp

#### <u>datacolor</u>

Academy

![](_page_8_Figure_4.jpeg)

The observer adjusted the red, green and blue lights until a color match was achieved.

Successfully matched the yellow primary lamp

#### datacolor

Academy

![](_page_9_Figure_4.jpeg)

Color was matched with .28 red, .25 green and 0 blue.

Adjusting to match the violet primary lamp

#### datacolor

Academy

![](_page_10_Figure_4.jpeg)

The observer adjusted the red, green and blue lights until a color match was achieved.

Successfully matched the violet primary lamp

#### <u>datacolor</u>

Academy

![](_page_11_Figure_4.jpeg)

Color was matched with .21 red, .08 green and .24 blue.

WAVELENGTH, (NM)

<u>datacolor</u>

Academy

Results of the color matching experiments of Wright and Guild

![](_page_12_Figure_3.jpeg)

Datacolor Confidential All Rights Reserved

Reason for negative numbers

datacolor \_\_\_\_

Academy

Since it is impossible to match all spectrum colors using positive amounts of any set of three real lamps, in some cases one of the primary lamps was moved to the test lamp side.

This created "negative numbers" in the data.

![](_page_13_Picture_6.jpeg)

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_3.jpeg)

1.0

.80

.60

.40

.20

![](_page_15_Figure_1.jpeg)

![](_page_15_Figure_2.jpeg)

#### datacolor

#### Academy

The CIE photopic luminosity function  $V(\lambda)$ was established by the CIE and describes the average spectral sensitivity of human visual perception of brightness.

Some wavelengths can be seen more easily than others. We see green light around 550 nm much more easily than at any other wavelengths. Luminosity is the property of light by which we define how easily we can see it.

The y (y bar) color matching function of the CIE Standard Observer was made equivalent to the CIE Luminosity function.

### A Second Experiment

Repeated in 1964 with different field of view and lamps

<u>datacolor</u>

Academy

In 1964 the experiment was repeated using larger target areas and different source lamps.

![](_page_16_Figure_5.jpeg)

The 10° field of view is about 27 times the area of the 2° field of view.

![](_page_16_Figure_7.jpeg)

A 2° field of view is about the size of a US dime held 18 inches from the eye.

#### 1964 10° – Standard Observer

#### datacolor \_\_\_\_\_

![](_page_17_Figure_3.jpeg)

datacolor

#### 1931 2° & 1964 10° Standard Observers

![](_page_18_Figure_3.jpeg)

### **A Colorimetric Description**

Defining a numerical system for color perception

X

Natural Daylight

We have described the visual color perception process by showing how the light source, object and observer are together responsible for color perception.

X

![](_page_19_Figure_3.jpeg)

**Object** (Apple)

Datacolor Confidential All Rights Reserved

![](_page_19_Picture_5.jpeg)

Human Observer

![](_page_19_Picture_6.jpeg)

Color

**Perception** 

### **Tristimulus Values**

Amounts of imaginary red, green and blue light to match color

Academy

Tristimulus values are computed wavelength by wavelength, by multiplying illuminant, object, & observer data, at each wavelength, then adding the results.

![](_page_20_Figure_5.jpeg)

#### **Tristimulus Calculation**

Sum of Product of Illuminant, Std Observer Data, and %R at  $\lambda$ 

$$X = K \sum_{380}^{780} P(\lambda) X(\lambda) R(\lambda)$$
$$Y = K \sum_{380}^{780} P(\lambda) Y(\lambda) R(\lambda)$$
$$Z = K \sum_{380}^{780} P(\lambda) Z(\lambda) R(\lambda)$$

$$K = 100 / (\sum_{380}^{780} P(\lambda) y(\lambda))$$

<u>datacolor</u>

Where:  

$$P(\lambda) = Light Energy$$
  
 $x(\lambda) = red std observer data$   
 $y(\lambda) = green std observer data$   
 $z(\lambda) = blue std observer data$   
 $R(\lambda) = Sample %R$   
 $K = normalizing factor$ 

### **Illuminant and Observer Data**

ASTM E308 Tables

#### datacolor

![](_page_22_Figure_4.jpeg)

### What the XYZ Means

![](_page_23_Picture_1.jpeg)

Having the Standard Observer Match the Apple Under Daylight Illumination AC

![](_page_23_Picture_4.jpeg)

# XYZ – D65/10°datacolorTristimulus Values of the Apple Under D65 with 1964/10° ObserverAcademy

![](_page_24_Figure_1.jpeg)

### XYZ D65/10° XYZ A/10°

![](_page_25_Picture_1.jpeg)

Changing Illuminant Changes the Amount of Light Required to Match Academy

![](_page_25_Figure_3.jpeg)

### **Using Tristimulus Values**

Colors with Equal XYZ Values Visually Match

![](_page_26_Picture_2.jpeg)

Academy

![](_page_26_Figure_4.jpeg)

The XYZ values are equal for the 2 samples using Illuminant D65 and the 1964 10° Observer.

These 2 samples should also be a visual match under a D65 type light source and a normal observer.

<u>datacolor</u>

Colors with Different %R Curves May Have Equal XYZ Values

Academy

![](_page_27_Figure_4.jpeg)

The XYZ values are equal for the 2 samples using Illuminant D65 and the 1964 10° Observer.

These 2 samples may be a visual match under a D65 type light source and a normal observer. Because of the spectral difference however, the sample pair may be a mismatch under a different illuminant or to a different observer. This is called metamerism.

The Illuminant Has Changed from D65 to A (Incandescent)

#### <u>datacolor</u>

Academy

![](_page_28_Figure_4.jpeg)

The XYZ values are now different for the 2 samples using Illuminant A and the 1964 10° Observer.

These 2 samples will not be a visual match under an incandescent type light source and a normal observer. Because of the spectral difference the sample pair will be a mismatch under a this different illuminant. The samples are called a metameric pair.

<u>datacolor</u>

Match Under D65/2

![](_page_29_Figure_3.jpeg)

![](_page_29_Figure_4.jpeg)

Simple Gray and Complex Gray

datacolor

![](_page_30_Figure_4.jpeg)

### **Chromaticity Diagram**

Mapping Color Coordinates

![](_page_31_Figure_2.jpeg)

#### <u>datacolor</u>

Academy

#### **Chromaticity Coordinates**

x = X / (X + Y + Z) y = Y / (X + Y + Z) z = Z / (X + Y + Z)x + y + z = 1.00

The chromaticity coordinates map the color with respect to hue and saturation on the two-dimensional CIE Chromaticity Diagram.

#### **CIE xyY Color Space**

### **CIE Chromaticity Diagram**

Chromaticity Coordinates

datacolor

Academy

![](_page_32_Figure_4.jpeg)

Tristimulus Values of Red Sample – D65/2

$$X = 31.10$$
  $Y = 18.37$   $Z = 10.35$ 

#### **Chromaticity Coordinates**

CIE xyY Color Space CIE xyY = ( .5199, .3071, 18.37 )

### **McAdam's Ellipses**

The Search a Uniform Color Space

<u>datacolor</u>

![](_page_33_Figure_4.jpeg)

<sup>©</sup> Datacolor All Rights Reserved

#### datacolor Academy

![](_page_34_Picture_2.jpeg)

#### <u>datacolor</u>

#### Academy

You might start by separating the gray or chips

### datacolor

![](_page_36_Picture_3.jpeg)

#### <u>datacolor</u>

### A Natural Color Language

![](_page_37_Picture_3.jpeg)

Hue, Chroma, Lightness

<u>datacolor</u>

![](_page_38_Picture_4.jpeg)

### **3 Dimensions of Color**

Hue, Chroma, Lightness

datacolor

![](_page_39_Picture_4.jpeg)

### Webinar – Final Comments

Academy

datacolor

We have described the visual color perception process and defined a colorimetric description in these last 2 webinars.

![](_page_40_Figure_3.jpeg)

![](_page_41_Picture_2.jpeg)

### Next session:

+ b\*

datacolor

+ a\*

![](_page_42_Picture_0.jpeg)

Academy

#### Want to learn more?

Sign up at <u>Datacolor Academy</u> for classroom style lectures and demonstrations covering useful color topics in select venues around the globe

Some useful reading material:

Do You Know How Humans See Color?

Follow Datacolor Blog for more useful information

![](_page_43_Picture_0.jpeg)

#### Academy

### Thank you and follow us:

![](_page_43_Figure_3.jpeg)

www.facebook.com/DatacolorCorporate

![](_page_43_Picture_5.jpeg)

www.linkedin.com/company/datacolor

![](_page_43_Picture_7.jpeg)

www.youtube.com/user/DatacolorIndustrial