Academy

Color Theory - Part 3

Color Coordinates

Color Theory - Part 3
Color Coordinates
datacolor
Academy

Review

Color Perception versus Color Description

datacolor

Academy
We have described the visual color perception process by showing how the light source, object and observer are together responsible for color perception.

Light Source

Daylight Illuminant Numerical Data

Ob

$=$ Color
Perception

Colorimetric Description

CIE Standard Observer
Numerical Data

Review
Standard Observer / Metamerism
datacolor
Academy

Color Order Systems

Munsell - A Visual System
datacolor
Academy

NCS
Natural Color System - Opponent Color Model

datacolor

Academy
S 1070-Y10R
w Nuance - blackness and chromaticness of a color. 10\% Red / 90\% Yellow 10\% Blackness 70\% Chromaticness

NCS Color Triangle

NCS Hue Circle

3 Dimensions of Color

Hue, Chroma, Lightness

datacolor

Academy

Hue is the term we use to describe a specific color like yellow, red, blue, green, violet.

Chroma is the amount or intensity of a specific hue. The saturation or difference from gray.

Lightness is the total amount of light coming from a sample independent of hue and chroma.

CIELAB

datacolor

Academy

CIE 1976

CIE L*a*b*

Opponent Color Model

CIELAB

datacolor

Academy

CIELAB

CIE L*a*b* Color Space
datacolor
Academy

CIELAB Equations

```
L* = 100 White
```



```
\(L^{*}=116\left(\mathrm{Y} / \mathrm{Y}_{\mathrm{n}}\right)^{1 / 3}-16\)
\(Y_{n}=\) Tristimulus Value of White Valid for \(\mathrm{Y} / \mathrm{Y}_{\mathrm{n}}>\) or \(=0.01\)
\(X_{n}=94.81 ; Y_{n}=100.0 ; Z_{n}=107.3\) For D65/10
L* \(=0\) Black
```


CIELAB Equations a^{*}, red-green

$$
\begin{aligned}
& a^{*}=500\left(X / X_{n}\right)^{1 / 3}-500\left(Y / Y_{n}\right)^{1 / 3} \\
& \text { Valid for } X / X_{n} \& Y / Y_{n}>\text { or }=0.01
\end{aligned}
$$

$$
X_{n}=94.81 ; Y_{n}=100.0 ; Z_{n}=107.3 \text { For } D 65 / 10
$$

CIELAB Equations
b^{*}, yellow - blue

$$
b^{*}=200\left(Y / Y_{n}\right)^{1 / 3}-200\left(Z / Z_{n}\right)^{1 / 3}
$$

$0 \quad$ Valid for $Z / Z_{n} \& Y / Y_{n}>$ or $=0.01$

$$
X_{n}=94.81 ; Y_{n}=100.0 ; Z_{n}=107.3 \text { For } D 65 / 10
$$

CIELAB

3 Dimensions of Color - Hue, Chroma, Lightness

Academy

CIE L*a*b*

L*a*b* Coordinates

datacolor

Academy

C^{*} / h
Metric Chroma - Metric Hue Angle

Color Difference

CIELAB Rectangular Coordinates - Da*, Db*, DL*

datacolor

Academy

Color Difference

CIELAB Polar Coordinates - DL*, DC*, DH* Metric Hue Angle
Academy

$$
\begin{gathered}
C^{*}=\left(a^{* 2}+b^{* 2}\right)^{1 / 2} \\
h=\tan ^{-1}\left(b^{*} / a^{*}\right) \\
D L^{*}=L^{*}{ }_{\text {BAT }}-L^{*} \text { STD } \\
(+ \text { is lighter }) \\
(- \text { is darker }) \\
D C^{*}=C^{*}{ }_{\text {BAT }}-C^{*}{ }_{S T D} \\
(+ \text { is more chroma }) \\
(- \text { is less chroma }) \\
D H^{*}=2\left(C_{\text {STD }}^{*} C^{*}{ }_{\text {BAT }}\right)^{1 / 2} \sin (d h / 2) \\
(+ \text { is counter-clockwise }) \\
D E^{*}=\left(D L^{2}+D C^{2}+D H^{2}\right)^{1 / 2}
\end{gathered}
$$

CIELAB
Rectangular and Polar Coordinates
datacolor
Academy

$$
d E^{*}=\sqrt{d L^{2}+d a^{2}+d b^{2}}
$$

$$
d E^{*}=\sqrt{D L^{2}+D C^{2}+D H^{2}}
$$

Color Difference

datacolor

Academy

CIELAB Color Difference

Red Apple 1 and Red Apple 2

datacolor

Academy

CMC Color Difference Equation

Ellipsoidal Tolerancing
Academy

DE*

$$
\Delta \mathrm{E}_{\mathrm{CMC}(\mathrm{l}: \mathrm{c})}^{*}=\left[\left(\frac{\Delta \mathrm{L}^{*}}{l \mathrm{~S}_{\mathrm{L}}}\right)^{2}+\left(\frac{\Delta \mathrm{C}_{\mathrm{ab}}^{*}}{c \mathrm{~S}_{\mathrm{C}}}\right)^{2}+\left(\frac{\Delta \mathrm{H}_{\mathrm{ab}}^{*}}{\mathrm{~S}_{\mathrm{H}}}\right)^{2}\right]^{1 / 2}
$$

$S_{L}=$ Lightness Tolerance
$S_{C}=$ Chroma Tolerance
$S_{H}=$ Hue Tolerance
l = Lightness Adjustment Factor
$c=$ Chroma Adjustment Factor

CMC Color Difference Equation

Meaning of the Value of the CMC DE
Academy

$l=$ Lightness Factor
Allows adjustment of DL* Semi-axis
$c=$ Chroma Factor
Allows adjustment of DC* Semi-axis

$$
\begin{aligned}
& \Delta \mathrm{E}_{\mathrm{CMC}(1: \mathrm{c})}^{*}=\left[\left(\frac{\Delta \mathrm{L}^{*}}{l \mathrm{~S}_{\mathrm{L}}}\right)^{2}+\left(\frac{\Delta \mathrm{C}_{\mathrm{ab}}^{*}}{c \mathrm{~S}_{\mathrm{C}}}\right)^{2}+\left(\frac{\Delta \mathrm{H}_{\mathrm{ab}}^{*}}{\mathrm{~S}_{\mathrm{H}}}\right)^{2}\right]^{1 / 2} \\
& \mathrm{DE}_{\mathrm{CMC}}^{*}=1.0 \\
& \text { Batch is on surface of ellipsoid. } \\
& \mathrm{DE}_{\mathrm{CMc}}^{*}<1.0 \\
& \text { Batch is inside ellipsoid (Pass) } \\
& \mathrm{DE}_{\mathrm{CMc}}^{*}>1.0 \\
& \text { Batch is outside ellipsoid (Fail) }
\end{aligned}
$$

CMC Color Difference Equation

Changing the Value of the CMC Adjustment Factor
Academy

CIE 2000 Color Difference Equation

datacolor

Meaning of the Value of the CIE 2000 DE
Academy

$$
\Delta E_{00}^{*}=\sqrt{\left(\frac{\Delta L^{\prime}}{k_{L} S_{L}}\right)^{2}+\left(\frac{\Delta C^{\prime}}{k_{C} S_{C}}\right)^{2}+\left(\frac{\Delta H^{\prime}}{k_{H} S_{H}}\right)^{2}+R_{T} \frac{\Delta C^{\prime}}{k_{C} S_{C}} \frac{\Delta H^{\prime}}{k_{H} S_{H}}}
$$

Includes lightness, chroma and hue weighting factors Improved gray colors
Improved performance for blue colors using rotational factor

$$
\mathrm{S}_{\mathrm{L}}=\text { Lightness Tolerance } \quad \mathrm{DE}_{00}^{*}=1.0
$$

Batch is on surface of ellipsoid.

$$
\mathrm{S}_{\mathrm{C}}=\text { Chroma Tolerance }
$$

$$
\mathrm{DE}^{*}{ }_{00}<1.0
$$

Batch is inside ellipsoid (Pass)
$D E^{*}{ }_{00}>1.0$
Batch is outside ellipsoid (Fail)

$$
\mathrm{S}_{\mathrm{H}}=\text { Hue Tolerance }
$$

$K_{H}=$ Hue Factor
Allows adjustment of DH^{*} Semi-axis
$K_{L}=$ Lightness Factor
Allows adjustment of DL* Semi-axis
$K_{C}=$ Chroma Factor
Allows adjustment of DC* Semi-axis

Webinar - Final Comments

Questions

Next session:

We will talk about color tolerances
Color Tolerances
DE
Rectangular
Ellipsoidal

AI Tolerancing

datacolor

Academy

Want to learn more?

Sign up at Datacolor Academy for classroom style lectures and demonstrations covering useful color topics in select venues around the globe

Some useful reading material:
Do You Know How Humans See Color?

Follow Datacolor Blog for more useful information

Thank you and follow us:

www.facebook.com/DatacolorCorporate
www.linkedin.com/company/datacolor

\triangleright
www.youtube.com/user/DatacolorIndustrial

