

Academy

Color Theory – Part 3

Color Coordinates

Color Theory – Part 3 *Color Coordinates*

datacolor

Review Color Perception versus Color Description

datacolor _____

Academy

We have described the visual color perception process by showing how the light source, object and observer are together responsible for color perception.

 $\int_{0}^{1} \int_{0}^{1} \int_{$

Datacolor Confidential All Rights Reserved

Review Standard Observer / Metamerism

<u>datacolor</u>

Color Order Systems

Munsell - A Visual System

datacolor

Academy

© Datacolor All Rights Reserved

NCS Natural Color System - Opponent Color Model

<u>datacolor</u>

3 Dimensions of Color

Hue, Chroma, Lightness

Academy

Hue is the term we use to describe a specific color like yellow, red, blue, green, violet.

Chroma is the amount or intensity of a specific hue. The saturation or difference from gray.

Lightness is the total amount of light coming from a sample independent of hue and chroma.

CIELAB Non-linear Transformation of CIE xyY Color Space

<u>datacolor</u>

Academy

CIE 1976 CIE L*a*b*

Opponent Color Model

CIELAB CIE L*a*b* Color Space

datacolor _____

CIELAB CIE L*a*b* Color Space

CIELAB Equations

L*, Lightness - Darkness

datacolor

Academy

L* = 100 White

 Y_n = Tristimulus Value of White Valid for Y/Y_n > or = 0.01

 X_n = 94.81; Y_n = 100.0; Z_n = 107.3 For D65/10

CIELAB Equations *a**, *red - green*

datacolor ____

Academy

Valid for $X/X_n \& Y/Y_n > or = 0.01$

X_n = 94.81; Y_n = 100.0; Z_n = 107.3 For D65/10

CIELAB

<u>datacolor</u>

3 Dimensions of Color – Hue, Chroma, Lightness

[©] Datacolor All Rights Reserved

C* / h Metric Chroma – Metric Hue Angle

datacolor

Academy

© Datacolor All Rights Reserved

Color Difference
CIELAB Rectangular Coordinates – Da*, Db*, DL*datacolor
AcademyDF* = $(DI *^2 + da*^2 + db*^2)^{1/2}$ b*
dE* = $\sqrt{dL^2 + da^2 + db^2}$

Color Difference CIELAB Polar Coordinates – DL*, DC*, DH* Metric Hue Angle Academy

h = tan⁻¹ (b*/a*) DL* = L*_{BAT} - L*_{STD}

(+ is lighter)

 $C^* = (a^{*2} + b^{*2})^{1/2}$

(- is darker)
DC* = C*_{BAT} - C*_{STD}
(+ is more chroma)
 (- is less chroma)

DH* = 2(C*_{STD} * C*_{BAT})^{1/2} sin (dh/2) (+ is counter-clockwise)

 $DE^* = (DL^2 + DC^2 + DH^2)^{1/2}$

datacolor **CIELAB** Academy Rectangular and Polar Coordinates $dE^* = \sqrt{dL^2 + da^2 + db^2}$ $dE^* = \sqrt{DL^2 + DC^2 + DH^2}$ Sample (E,) Sample (E_1) _____ $L_{1}^*a_1^*b_1^*$ **L**1*C1*h1 dE* dE* dL* dL* $L_0^*C_0^*h_0$ db* dH* Standard (S_0) da* dh Standard (S_o) dC* dC* L*₀a*₀b*₀

CIELAB Color Difference

datacolor

Red Apple 1 and Red Apple 2

	Current Illumi	Batch Name	Batch CIE X	Batch CIE Y	Batch CIE Z	Batch CIE L	Batch CIE a	Batch CIE b	Batch CIE C	Batch CIE h
	D65 10 Deg	Red Apple 2	24.30	16.28	11.16	47.34	44.58	15.16	47.09	18.78
	A 10 Deg		37.04	21.62	3.62	53.62	46.57	26.30	53.49	29.45
	F11 10 Deg		30.77	19.11	6.90	50.82	45.29	20.79	49.84	24.66
-										

CIELAB Color Difference – DL*, Da*, Db*, DC*, DH*, DE*

Current Illumi	Batch Name	CIE DL	CIE Da	CIE Db	CIE DC	CIE DH	CIE DE
D65 10 Deg	Red Apple 2	3.69	-3.92	0.78	-3.50	1.93	5.4
A 10 Deg		3.13	-4.44	0.28	-3.78	2.34	5.4
F11 10 Deg		3.96	-2.19	0.37	-1.85	1.23	4.5

CMC Color Difference Equation

Ellipsoidal Tolerancing

DE*

datacolor

$$\Delta E_{CMC(l:c)}^{*} = \left[\left(\frac{\Delta L^{*}}{lS_{L}} \right)^{2} + \left(\frac{\Delta C_{ab}^{*}}{cS_{C}} \right)^{2} + \left(\frac{\Delta H_{ab}^{*}}{S_{H}} \right)^{2} \right]^{1/2}$$

$$S_{L} = \text{Lightness Tolerance}$$

$$S_{C} = \text{Chroma Tolerance}$$

$$l = \text{Lightness Adjustment Factor}$$

$$c = \text{Chroma Adjustment Factor}$$

CMC Color Difference Equation

Meaning of the Value of the CMC DE

Tolerance Maintenance - CMC						
✓ All Illuminant/Observer						
DE*	1	с				
1.00	2.00	1.00				
	Ok		[Cancel		

l = Lightness Factor
Allows adjustment of DL* Semi-axis

c = Chroma Factor
Allows adjustment of DC* Semi-axis

Academy

$$\Delta E_{CMC(l:c)}^{*} = \left[\left(\frac{\Delta L^{*}}{lS_{L}} \right)^{2} + \left(\frac{\Delta C_{ab}^{*}}{cS_{C}} \right)^{2} + \left(\frac{\Delta H_{ab}^{*}}{S_{H}} \right)^{2} \right]^{1/2}$$

DE*_{CMC} = 1.0

Batch is on surface of ellipsoid.

DE*_{CMC} < 1.0

Batch is inside ellipsoid (Pass)

DE*_{CMC} > 1.0

Batch is outside ellipsoid (Fail)

CMC Color Difference Equation

Changing the Value of the CMC Adjustment Factor

datacolor

Academy

l = 2 c = 1

CIE 2000 Color Difference Equation

Meaning of the Value of the CIE 2000 DE

Tolerance Maintenance - CIE 2000						
☑ All Illuminant/Observer						
DE*	1	c	h			
1.00	1.00	1.00		1.00		
	Ok			Cancel		

$$\Delta E_{00}^* = \sqrt{\left(\frac{\Delta L'}{k_L S_L}\right)^2 + \left(\frac{\Delta C'}{k_C S_C}\right)^2 + \left(\frac{\Delta H'}{k_H S_H}\right)^2 + R_T \frac{\Delta C'}{k_C S_C} \frac{\Delta H'}{k_H S_H}}$$

Includes lightness, chroma and hue weighting factors Improved gray colors Improved performance for blue colors using rotational factor

 K_L = Lightness Factor Allows adjustment of DL* Semi-axis

S_L = Lightness Tolerance

DE*₀₀ **= 1.0** Batch is on surface of ellipsoid.

 K_C = Chroma Factor Allows adjustment of DC* Semi-axis

 K_H = Hue Factor Allows adjustment of DH* Semi-axis

DE*₀₀ < **1.0** Batch is inside ellipsoid (Pass)

DE*₀₀ > 1.0 Batch is outside ellipsoid (Fail)

<u>datacolor</u>

Webinar – Final Comments

Academy

Questions

Illuminant

Academy

We will talk about color tolerances

Color Tolerances

DE

Rectangular

Ellipsoidal

Al Tolerancing

Object

= Color Perception

+

27

Observer

Academy

Want to learn more?

Sign up at <u>Datacolor Academy</u> for classroom style lectures and demonstrations covering useful color topics in select venues around the globe

Some useful reading material:

Do You Know How Humans See Color?

Follow Datacolor Blog for more useful information

Academy

Thank you and follow us:

www.facebook.com/DatacolorCorporate

www.linkedin.com/company/datacolor

www.youtube.com/user/DatacolorIndustrial